
CERTAIN PROPERTIES OF MIXING LAYERS 
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We are examining the properties of solutions of the Falkner-Skan equation in the 
limiting case when the parameter in the equation approaches zero. Two types of 
boundary conditions are formulated. The first type corresponds to flow in a 
symmetric wake. The second corresponds to flow about a plate. The results of 
calculations and an asymptotic analysis make it possible to conclude that the 
transition from one type of boundary conditions to another involves a sharp change 
in the position of the mixing layer. 

i. Let x and y be Cartesian space coordinates, v be kinematic viscosity, and U(x) be 
the longitudinal component of velocity on the outside edge of the boundary layer. Following 
Gertler [i], we introduce the dimensionless variables 

I ~ ~: -'~ ~=-4-.; U(x)dx, N=yU(x 2v U(x)dx (1.1) 
t .  0 0 

and take the stream function @ in the form 

The equation for r appears as 

~ + f ~ + [ ~ ( ~ ) [ l  {of ~2] = ~ (of 02f 
o~ ~ - - ~ ] J  ~ ~ a~o~l 

(1.2) 

o~ ~),. (1 .3 )  

where 
dU ~ T = 2U -2 (x) -~x U (x) dx. 

0 

Let us formulate boundary conditions with q = 0 corresponding to flow in a symmetrical 
wake and flow about a flat plate. On the axis of the wake 

f = 021/Oq ~ = 0~ (i. 5) 

while on the surface of the plate 

/ = ol/a~ = 0. (1.6) 

The condition on the outside edge of the boundary layer is formulated as a limiting condition 

D//Oq--+t at ~ - + o o  (1.7) 

:for all the flows studied below. 

When U = U 0 = const, the parameter $ = 0. In this case, the function f may depend on 
a single variable ~. However, except for the trivial solution f = n, Eq. (1.3) has no self- 
similar solution that would satisfy boundary conditions (1.5). Replacement of conditions 
(1.5) by (1.6) leads to the familiar problem of uniform flow about a semi-infinite plate. 
Its solution, belonging to Balusius [i], is not of interest for the subsequent analysis of 
boundary layers with reverse fluid flows. We will use the function f0 obtained in [2] as 
the initial self-similar solution. This function satisfies the first of conditions (1.5) 
or (1.6), but instead of the second of these conditions - expressing the requirement of 
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Fig. 1 

symmetry of the flow or adhesion of the fluid to the surface of the solid - yet another 
asymptotic relation is satisfied 

d[aldq ---> 0 at ~I -~ - -  co. ( l .  8 ) 

Chapman's solution describes a mixing layer which separate a uniform flow with the velocity 
U 0 in the top half-plane y > 0 from a quiescent fluid in the bottom half-plane y < 0. 

2. Let x 0 be a certain constant with the dimension of length. If 

u=vo 1+-~ ,. IPoI<<~,, 

then the velocity of the external potential flow will change slightly along the x axis except 
for the small neighborhood of the point x = 0. In accordance with (1.4), in the first approxi- 
mation we find S = S0. The sense of introducing independent variables of (i.i) is clear from 
this. The solution for the stream function in these variables remain self-similar and is 
determined from the ordinary differential equation 

[ (2.1) W-L + I d-~-~ + ~o Lt =0.  d,q3 \ d~ I J 

When 80 + 0+, the solution of Eq. (2.1) with boundary conditions (1.6) approaches the 
solution found by Blausius [i]. To construct a velocity field which includes the reverse 
fluid flow, it is necessary to put B0 + 0_ and change over to another branch of the solution 
indicated in [3]. The solid curve in Fig. i shows results of calculation for B0 = -6.0'10-4 
which makes it possible to judge the qualitative properties of the asymptotic solution for 
flow about the plate. 

Equation (2.1), with boundary conditions (1.5) was integrated numerically in [4] for the 
case of very small negative values of S0. The dashed line in Fig. 1 shows the distribution 
of the horizontal component of velocity across the wake for the same value of B0 = -6-0"10-4. 

The above data shows that the asymptotic solution at So ~ 0_ is accompanied by an 
infinite increase in the size of the region occupied by the reverse flow. Meanwhile, a 
mixing layer is formed on the external edge of this region. The mixing layer is adjacent 
to the incoming uniform flow. The circles in Fig. 1 pertain to the solution obtained in [2] 
for the above-mentioned three-point boundary-value problem for Eq. (2.1) with S0 = 0. However, 
the coordinate system was shifted so that the point of inflection for the derivative df/do 
coincided with the analogous point in the solutions for a symmetrical wake and a boundary 
layer on a plate. The calculations leave no doubt that all of the mixing layers examined are 
identical. It is important to emphasize that although a change in the boundary conditions in 
the integration of (2.1) does not affect the internal structure of the mixing layer, it does 
entail an abrupt spatial shift. Given the same values of S0, the Champion layer in the wake 
problem is located much lower than the same layer formed in flow about the plate. 
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Similar properties characterize the solution obtained in [5] for the problem of a plate 
in a uniform flow based on the assumption that there is no external pressure gradient. This 
solution is not self-similar. The region of recirculatory motion in it is described by the 
relation ~ = -Hy 2 with a positive constant H. An appreciably thinner mixing layer is located 
at the distance 

y = (hlH)~l~l/4 (2.2) 
from the  p l a t e ,  t he  c h a r a c t e r i s t i c  c r o s s - s e c t i o n a l  d imension of  t h i s  l a y e r  i n c r e a s i n g  in 
p r o p o r t i o n  to  x~/2 .  The c o n s t a n t  h f i x e s  t he  r a t e  of  r e t u r n  f low in the  mixing l a y e r .  The 
l a t t e r ,  as f o l l o w s  from ( 2 . 2 ) ,  r i s e s  h i g h e r  above the  p l a t e  as H i s  a r b i t r a r i l y  r educed .  
S ince  t h e  p r e s s u r e  g r a d i e n t  h e r e  i s  z e r o ,  t h e  a s y m p t o t i c  s o l u t i o n  i s  no t  connec ted  wi th  t he  
p r o p e r t i e s  of  t h e  e x t e r n a l  f low.  The l a t t e r  f low i s  accoun ted  f o r  by means of  t h e  pa ramete r  
~ in Eq. ( 2 . 1 ) .  Thus, even ve ry  smal l  changes in  p r e s s u r e  a long t he  boundary l a y e r  may 
have a s i g n i f i c a n t  e f f e c t  on t he  s t r u c t u r e s  of  t h e  v e l o c i t y  f i e l d  in  t h e  r e c i r c u l a t i o n  
r e g i o n .  

3. We w i l l  p rove  t h e  above arguments  by means of  a s y m p t o t i c  a n a l y s i s  of  Eq. ( 2 . 1 ) .  
We use  f0a  to  d e s i g n a t e  t h e  Champion s o l u t i o n  f0 s h i f t e d  a long the  q a x i s  by t he  amount a. 
As b e f o r e ,  i t  s a t i s f i e s  a s y m p t o t i c  r e l a t i o n s  ( 1 . 7 )  and ( 1 . 8 ) ,  but  i t  does no t  s a t i s f y  t he  
f i r s t  of  boundary c o n d i t i o n s  ( 1 . 5 )  or  ( 1 . 6 ) .  When ~0 ~ 0_, w e w i l l  seek the  s o l u t i o n  o f  
Eq. ( 2 . 1 )  in t he  form 

/ = foa(~) + e]'(~)~ e'-'+ O~ ( 3 . 1 )  

without making any assumptions regarding the relative value of the two small parameters. 
Linearization of Eq. (2.1) after insertion of Eq. (3.1) into it gives 

dZf  ',oo s, + m o # l  
+fOadn: + ( 3 . 2 )  d~ -d~-~: \ d q / ] = O. 

In accordance with (1.7), we require that 

d / ' / d q  ~ 0 at ~ -+ oo, (3.3) 

Following [6], we integrate Eq. (3.2), having made use of the fact that the homogeneous 
equation corresponding to it has two linearly independent integrals: 

e/O<, etoa 
l{ = ~-r / ,  = lea q- ~-~- .  (3.4) 

If we put 

then the initial solution is written as 

= ~ + a:~ ( 3 . 5 )  

1o~(~) = Io(~), ( 3 . 6 )  

;Proceeding on the basis of Eq. (3.4), we finally have 

�9 . ' %  I ~ r~ (~) + ,~o d~ s~ (D. ( 3 . 7 )  

Here, A~, A 2, and A 3 are arbitrary constants, while the integral terms 12 and J3 are deter- 
mined by means of the equalities 

Iz(~) = i [ 2  /~176 (d/o/d~l)~ (3.8) 

oo 

{' e/o/a~ 2 • a~fo/d~ ~ .~  
4 (%) ~ (d/old~).~ + dOSol~l., ~ ,  (3.9) 

oo 

(a+ol<~,),~ j ,/2 (~1) dB:,; ( 3 .10  ) 
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[ <~&laL.~ <:<~~ ~ �9 ( 3 . 1 1 )  

~(h [~ - (a lo l<%) ~ ] [2 (dSo!<%) ~ +  d ~ soi<%~ l d~' s , ( ~ )  . . . . . .  j '~ .> . . . . . . .  . o~. 
g. a/ol,Z~,3 

(3.12) 

It is henceforth necessary to know the asymptotic behavior of the solution when ~ + 
and $ + -~, which depends on the corresponding asymptotes of the Champion function (the 
constant $0 > 0 in the expression for Jl is assumed to be sufficiently large). When ~ + ~, 
in accordance with boundary condition (1.7) we find 

| | ( ~ 2 - ~ )  2 

L, . , ,~__ b + B ~ d ~ i [  e 2 d~2;. 5 . . .~ ( 3 . 1 3 )  

while when ~ + -~o, asymptotic relation (1.8) leads to 

/o . . . . .  c ~- c-2C e r -}- ... ( 3 . 1 4 )  

The values of the constants b, c, B, and C are calculated by joining both asymptotes with the 
solution for the region where ]~1% i. Insertion of expansion (3.13) into (3.9) permits us 
to conclude that the integral 11 approaches zero exponentially if ~ + ~. Returning to (3.8), 
it is easy to obtain the estimate 

leading to the conclusion that 12 decays exponentially when ~ + ~. The issue of the conver- 
gence of J3 is somewhat more complicated. Actually, the application of Eq. (3.13) to Eq. 
(3.12) yields 

J ,  "~ J~o q- 4 In (~  - -  b)-~ ... 

with a constant J10. The observed divergence of J1 at $2 + + ~ is weak, so the integral J2, 
determined through J1 by means of (3. ii), not only converges, but exponentially approaches 
zero at ~ + co. Now from (3.10) we obtain the following estimate for J3 

oo 

4 - 2~ ~ (~,)d~, + . . . ,  

g u a r a n t e e i n g  e x p o n e n t i a l  decay  o f  t h e  q u a n t i t y  when ~ § ~. 

S i n c e  t h e  r e l a t i o n  be tween t he  v a r i a b l e s  $ and ~ in  ( 3 . 5 )  i s  l i n e a r ,  b o u n d a r y  c o n d i t i o n  
( 3 . 3 )  can be s a t i s f i e d  o n l y  i f  we s e t  t h e  c o n s t a n t  A a = 0 in  s o l u t i o n  ( 3 . 7 ) .  As r e g a r d s  t h e  
c o n s t a n t s  A1 and A 3, t h e y  remain  a r b i t r a r y  f o r  now. 

Having i n s e r t e d  t h e  a s y m p t o t i c  r e p r e s e n t a t i o n  ( 3 . 1 4 )  o f  t h e  Champion f u n c t i o n  i n t o  Eq. 
( 3 . 9 ) ,  when ~l ~ - ~  we f i n d  

11 . v  I , o  -- e - 3 ~ l  + . . . .  

where 110 is a constant. Then from (3.8) we have 

~ ( c4I~~ ) 
I=~\~ ~ ~ e-y~+ ..., (3.15) 

if we limit ourselves to the terms which increase exponentially when $ ~-~. Being used to 
calculate integral (3.12), asymptote (3.14) gives 

Yx ~ Ylo -- c~l + . . . ,  

when 62 ~ -~, where 510 is a constant. In accordance with (3.11), the increase in J2 when 
~i + -~ also occurs algebraically 
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I ( J ' ,o~-- i~  a) + 7~ ~ d~o -- 7y . . .  

with yet another constant J2o. Retaining in the right side of (3.10) only the terms which 
increase exponentially when $ + -~, we write 

dz "" . c~J2~ +~ c" + - - 7 - - -  ~ + ga o - ~  + . . .  (3.16) 

Equations (3.15) and (3.16) make it possible to obtain an asymptotic expansion of solution 
(3.7) in the form 

~A3(c'II~ + (3.17) 
1 "  - c + 7 0 ~  + ' - ~  k 7 

C . , o  

4. The above-constructed linear approximation is not uniformly accurate when $ § 
]it can be modified in this region in the following manner. We introduce the small parameter 
o~ = gAs/c 2 and assume that the ratio IB01/~ << i. It is understood that this assumption 
requires validation during the course of the subsequent analysis. Now we leave the following 
dominant terms in asymptotic expansion (3.17) 

f , - - - - c - - a ~ + ~ ) + . . . ,  d 1--#4~ (4.1) 
C 

and, recalling Eq. (3.6), we simplify Eq. (2.1). As a result 

dZf 

From here we obtain an expression for the second derivative [6] 

d~l [c+r ~=[r 
d~'-- ~ = D - -  ~o e r �9 

0 

(4.2) 

The arbitrary constant D in this expression is determined by joining (4.2) with the 
asymptote 

- + -2-  + 

following from (3.17). This requirement is satisfied if 

D = Ce -#/2~-ce.  ( 4.3 ) 

We will satisfy the first of conditions (1.5) or (1.6), applying both to flow in a wake 
,and for the boundary layer on the plate. In accordance with (3.5), the variable ~ = -a at 

= 0. Having used approximate representation (4.1), we find 

a - e/a + d,, (4.4) 
from which we immediately conclude that 

dZl (~ 
dTl ~ (4.5) 

Integrating of Eq. (4.2) yields 

d'-~ ---- J e" D-- ~o 
0 

e v~[c +~(~ ~2)|'~ d~2 } d~t + E~ (4.6) 
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while the arbitrary constant E should be chosen by combination with the asymptotic expansion 

</~ ,. . . . .  t- + �9 ..,; 

which follows from(3.17). Theunion is achieved when 

c ~o~o 
E c ' i "  6td ' ~---7" (4.7) 

With allowance for Eq. 

ef (o~ 
d i I 

(4.4), from here we have 

o i �84 [.'io j' 
o 

e-.,~i~ <i ~,->)1'.,. , , .  ] ag,,a~, j. 

Definitions (4.3) and (4.7) of constants D and E are equally valid for both classes of 
flows examined here. 

5. To construct the velocity field in the symmetrical wake, 
the second condition of (1.5). From (4.5) we find the equality 

1 / ~ "  1 /  
, 

it is necessary to satisfy 

first presented in [6]. 

We make an estimate of the double integral from the right side of Eq. (4.8). 
venience, we represent itas -I, since I < 0. The folowing inequalities exist 

For con- 

i 2 . t o , < ? .  ~-~,a~, < :  + tr ~ ,  

the use of which makes it possible to confirm that 

, ) r ,,) (5.2) 

Despite the fact that this integral increases without limit when a + 0, its contribution 
to Eq. (4.8) is negligible if we are studying the velocity field in the wake. This is be- 
cause the coefficient 80 exponentially approaches zero in this case as a result of (5.1). 
Thus, the small parameter [6] ~ = -df(0)/dq. 

The circumstances are different in the case of flow with a boundary layer on a plate, 
when Eq. (4.8) itself must vanish. Instead of Eq. (5.1) we have the inequalities 

- <~0<- (5.3) 
c t. t c t 1 

l n V ~  i 2 + . 1,,2 l a ~ + T + T m ~  

based on (5.2), where 

As relations (5.1) and (5.3) show, G0 < 0, while I~011~ << : in accordance with the 
assumption made above. Thus, even very small changes in pressure on the outside edge of 
the boundary layer can have a significant effect on the motion of the fluid in the recircula- 
tion region. This fact explains the results from [5] discussed in Part 2. 

Let us look at the main properties of the velocity fields constructed here. First of 
all, we find from Eqs. (3.5) and (4.4) that 
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= ~ml= Cl~ q- d (5.4) 

when $ = 0. It follows from this that the mixing layer moves away from the symmetry axis of 
the wake or plate with a decrease in the pressure gradient, characterized by the parameter 
S0. This conclusion from the asymptotic analysis confirms the results of the calculations 
summed up in Fig. i. 

However, there is a substantial difference between the two classes of flows investigated 
here. It is easily seen that given the same ~, the value of IDol obtained in accordance 
with (5.1) is an order of magnitude less than the value obtained from inequalities (5.3). 
Conversely, with a prescribed value of B0, the value of the parameter ~ calculated from (5.1) 
is much greater than that lying within the range of (5.3). In sum, given the same gradient of 
external pressure, the mixing layer bounding the region of recirculatory motion in the wake 
is located considerably below the analogous layer formed in flow about the plate. This 
conclusion - which is also consistent with the calculated data in Fig. 1 - contradicts 
inductive representations. According to the latter, the presence of a thin body in a flow 
significantly changes the velocity field only near its surface. It is clear from this that 
the introduction, by the experimenters in [8, 9], of a so-called separating plate in the wake of 
a bluff body in order to damp axisymmetric oscillations may be accompanied by radical re- 
structuring of the entire flow. Correct interpretation of the results of such tests demands 
that the separating plate be regarded as an integral part of the obstacle in the flow. 

Viscous shear stresses determine the structure of the overall velocity field. In fact, 
the mixing layer and its neighborhood - embracing the outside edge of the recirculation 
region - are described by variation (3.1) of the Champion function. Equations (4.2) and (4.6) 
are valid for the internal part of the region of reverse flow. The third derivative d3f/dn 3 
in the initial Falkner-Skan equation also played an important role in the derivation of Eqs. 
(4.2) and (4.6). Moreover, without resorting to these formulas, it would be impossible to 
satisfy the boundary conditions either on the surface of the body or on the symmetry axis of 
Inhe wake without losing the connection between the pressure gradient and the position of the 
mixing layer. 

In conclusion, let us compare the thickness of the reverse stream obtained from the 
asymptotic analysis with the thickness with the tickness found by direct numerical integra- 
tion of the Falkner-Skan equation. Having subjected the Champion function to the additional 
condition [6] that the constant C = c 3 in expansion (3.14) when ~ ~ -~, for the sake of 
convenience we drop the condition df0/d$ = 0, with ~ = 0, when determining the function. 
Then c = 0.876 and d = 1.765/c = 2.014. These values fix the values of ~0 and ~m~ in Eqs. 
(5.1), (5.3), and (5.4). The results of the calculations are shown in Fig. 2, where the 
region between the dashed lines was constructed from (5.3) and the solid curve represents 
data from numerical integration of Eq. (2.1) with different B0 for the boundary layer on the 
plate. 
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HEAT TRANSFER IN A FILM FLOWING OVER THE SURFACE 

OF A CONVERGENT DUCT 

A. M. Lapin, L. I. Sen', and A. M. Te UDC 621.181.61:629.12 

Efficient organization of the process of thermal softening of highly-mineralized 
natural liquids such as sea water requires their heating to temperatures above 200~ with 
a nonboiling regime of operation of the heat-transfer unit. One method of realizing such 
heating is the use of film-type units, in which heat is supplied to a laminar film of liquid 
from the free phase boundary [i]. In contrast to recuperative heat exchange, in this case 
the minearalized liquid can be heated to a high temperature while the temperature of the 
boundary layer of the film is relatively low. It is this circumstance that permits non- 
boiling operation of the water heater. 

It has been established experimentally [2] that the flow of fluid in a convergent duct 
with a total convergence angle of more than 90 ~ (in contrast to flow over a vertical surface) 
results in a two-dimensional laminar nonwavy regime of film flow with a broad range of flow 
rates. This hydrodynamic feature makes it possible to more fully utilize the advantages of 
the given method of heating and accounts for the preference of using convergent-duct-film 
units [3, 4] to heat scale-forming solutions. 

Here we study the process of contact heat exchange in the condensation of pure vapor on 
a film of liquid flowing over the surface of a convergent duct. 

Formulation of the Problem. Assuming the problem to be steady and axisyn~netric, we 
write the following equations of conservation of momentum, continuity, and energy in a 
boundary-layer approximation for a thin liquid film: 

�9 0(0 ) u ~  + v-~ ou Pt OPo++ + "~ v -~- + g sin r (1)  

t Op p oy + gcos~z = O; (2) 

e) (ru) a (rv) = O; ( 3 )  a~ + ag' 
( or or) a ( o r )  

pc u ~ - l - v . - + ~  - =~y %~ �9 (4) 

Here, x is the longitudinal coordinate, directed downflow along the generatrix of the 
convergent duct; y is the transverse coordinate, directed perpendicular to the generatrix of 
the duct; the origin of the coordinates is on the inlet edge of the duct; u and v are 
respectively the x and y components of velocity; g is acceleration due to gravity; p is 
pressure; a is the angle of inclination of the duct generatrix to the horizontal; r(x) is 
the running radius of the duct; ~, p, c, %, and T are the kinematic viscosity, density, 
specific heat, thermal conductivity, and temperature of the liquid. 

The problem is solved with the following assumptions: the subjacent surface of the 
duct is thermally insulated; there is no shear stress on the liquid-vapor boundary; the 
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